Control of mitotic and meiotic centriole duplication by the Plk4-related kinase ZYG-1.

نویسندگان

  • Nathaniel Peters
  • Dahlia E Perez
  • Mi Hye Song
  • Yan Liu
  • Thomas Müller-Reichert
  • Cathy Caron
  • Kenneth J Kemphues
  • Kevin F O'Connell
چکیده

Centriole duplication is of crucial importance during both mitotic and male meiotic divisions, but it is currently not known whether this process is regulated differently during the two modes of division. In Caenorhabditis elegans, the kinase ZYG-1 plays an essential role in both mitotic and meiotic centriole duplication. We have found that the C-terminus of ZYG-1 is necessary and sufficient for targeting to centrosomes and is important for differentiating mitotic and meiotic centriole duplication. Small truncations of the C-terminus dramatically lower the level of ZYG-1 at mitotic centrosomes but have little effect on the level of ZYG-1 at meiotic centrosomes. Interestingly, truncation of ZYG-1 blocks centrosome duplication in the mitotic cycle but leads to centrosome amplification in the meiotic cycle. Meiotic centriole amplification appears to result from the overduplication of centrioles during meiosis I and leads to the formation of multipolar meiosis II spindles. The extra centrioles also disrupt spermatogenesis by inducing the formation of supernumerary fertilization-competent spermatids that contain abnormal numbers of chromosomes and centrioles. Our data reveal differences in the regulation of mitotic and meiotic centrosome duplication, particularly with regard to ZYG-1 activity, and reveal an important role for centrosomes in spermatid formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C. elegans by controlling the levels of centriole assembly factors.

Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffo...

متن کامل

Plk4/SAK/ZYG-1 in the regulation of centriole duplication

Centrioles organize both centrosomes and cilia. Centriole duplication is tightly regulated and coordinated with the cell cycle to limit duplication to only once per cell cycle. Defects in centriole number and structure are commonly found in cancer. Plk4/SAK and the functionally related Caenorhabditis elegans ZYG-1 kinases initiate centriole duplication. Several recent studies have elucidated th...

متن کامل

Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication

In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulat...

متن کامل

Plk4 Phosphorylates Ana2 to Trigger Sas6 Recruitment and Procentriole Formation

Centrioles are 9-fold symmetrical structures at the core of centrosomes and base of cilia whose dysfunction has been linked to a wide range of inherited diseases and cancer. Their duplication is regulated by a protein kinase of conserved structure, the C. elegans ZYG-1 or its Polo-like kinase 4 (Plk4) counterpart in other organisms. Although Plk4's centriolar partners and mechanisms that regula...

متن کامل

SAK/PLK4 Is Required for Centriole Duplication and Flagella Development

BACKGROUND SAK/PLK4 is a distinct member of the polo-like kinase family. SAK-/- mice die during embryogenesis, whereas SAK+/- mice develop liver and lung tumors and SAK+/- MEFs show mitotic abnormalities. However, the mechanism underlying these phenotypes is still not known. RESULTS Here, we show that downregulation of SAK in Drosophila cells, by mutation or RNAi, leads to loss of centrioles,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2010